Asset Performance Management
Combines process information with high frequency vibration to provide asset prediction & prescription.
Key Technology Differentiators
- Harnessing of Process and high frequency vibrations to AI models for high fidelity predictions and wide fault coverage
- Unsupervised AI models to detect unknown unknowns and not just known defects based on pattern recognition
- Self-tuning adaptive AI models that self-train based on auto-detection of maintenance events and/or major process changes
- FMEA Engine for cause advisory and actionable recommendations

APM 360™ Key Features
Asset Health Intelligence
-
- Asset Health Score for asset and plant
- Asset Performance Degradation
Real-time Asset Monitoring
-
- Asset templates for rotating & static equipment
- Predictive Analysis, early detection of asset anomaly
- FMEA Library for cause determination and corrective action
Predictive Maintenance
-
- Predictive maintenance advisory
- Maintenance KPI prediction, i.e.: MTBF, MTBM
- Digital twins for What-if analysis – run-time extension, failure prediction
SAAI’s Asset Templates cover major assets:
Rotary Assets:
-
- Motors
- Pumps
- Fans
- Blowers
- Compressors
- Turbines
- Engines
Static Assets:
-
- Furnaces
- Columns
- Heaters
- Heat Exchangers

APM 360™ Architecture


Case Example One: APM for large multi-stage centrifugal compressors
Maximize availability of integrally geared multi-stage centrifugal air compressor in an 3000 tons / hour Ammonia plant by predicting anomalies with cause and mitigation action advisory. Digital twin used blend of unsupervised with supervised ML models – TDA, LSTM encoders, KNN, Decision trees for anomaly detection. Benefit delivered $2M in a year by preventing unplanned outage events.
Case Example Two: Predictive Maintenance of LNG compression train
Minimize unplanned downtime of multi-stage centrifugal fuel gas compressor, gas turbine driven export gas centrifugal compressor, reciprocating boil-off gas compressor trains in a large LNG liquefaction facility by detecting incipient equipment faults & their causes. FMEA-powered blend of unsupervised & semi-supervised ML: TDA, SVM, NN Autoencoder, Random Forest. Benefit delivered over $2M through timely repair recommendations and outage avoidance.


APM 360™ Available on Microsoft Azure Marketplace
Customers can use the scalability, reliability, and agility of Microsoft Azure to deploy APM 360 to improve manufacturing operations.
View on Azure Marketplace
Built on the Eureka AI Industrial Platform
Eureka AI Industrial Platform is the foundation layer of APM 360™. Beyond secure data connectivity, processing and storage, Eureka Industrial Platform provides rich user features such as connectors, analysis, dashboarding, alerts, cases and workflows that are seamlessly integrated into the APM user experience.